METHOD OF CONSTRUCTING EMPIRICAL EQUATIONS
OF STATE

R. Meyer-Pitiroftf UDC 536.71

A method is described for approximation of the equation of state p = p(p, T) in the form of
a double polynomial by the method of least squares,

We understand a relationship between three thermodynamic quantities, p = p(p, T), say, to be the
equation of state of a homogeneous substance, Two methods exist for setting up this relationship.

1. A theoretical method permitting a deduction to be made about the behavior of the substance on the
basis of the behavior of the separate atoms or molecules by using statistical mechanies.

2. An empirical method permitting a mathematical relationship to be obtained by using thermodynamic
experimental results,

We obtain more exact results by using the second method in the presence of appropriate thermody-
namic data.

1t has been established by a careful analysis of available mathematical forms of the equations that
the form
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is most suitable for the solution of the problem on an electronic digital computer, where Zij are coeffi-
cients, The subscript ¢ denotes the critical state,

The dimensionless form is

P 1160 ) 2 T, (1b)
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where 8 =p/pe; w = p/bc; ¢ =T/Te;1=RTepe/pe; T=1-1/95 § = w—1.

This form of the equation is none other than a modification of the virial form with a finite number of
terms .

2=1+BM)p+CT)p*+ -, (2)
where B(T), C(T). .. are virial coefficients.

Stein [1] used the form (1b) in 1965. However, he did not succeed in extending the result to the liquid
phase domain, Moreover, the Maxwell criterion was not satisfied.

Introduction of the variables ¢ and 7 facilitates compliance with the critical conditions since they be-
come zero at the critical point and the majority of terms of the function hence drop out.
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The standard critical conditions are the following:
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where g is the saturation pressure. Application of these conditions to (1b) permits determination of the
following coefficients
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By using known thermodynamlc laws an equation of state for all the other state parameters can be

. derived from the determined equation of state, g = g(w, 4), say. If some equation exists in an appro-
priate potential form, then all the subsequent state parameters can be calculated therefrom by ordinary
differentiation, Hence, it is recommended to reduce the initial equation to an appropriate potential form,
called the canonical equation. The Helmholtz potential form (the specific free energy) f is applicable for
the independent variables v and T. This potential is obtained from the eguation g = g(w, ¢) by means of
the following transformation:
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where <p’1§ (¢) is the dimensionless form of the Helmholtz poten’clal in the ideal gas state at a 1 atm pres-
sure, and this potential is a pure function of the temperature and should be known. Application of the
transformation (3) for equation (1b) leads to the expression
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Hence, all the state parameters are easily computed by means of appropriate differentiation:

the pressure p (equation (5) corresponds to (1b)):
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the specific entropy s:

the specific enthalpy h:

the isochoric specific heat cy:

Po*™ L [ Vl M o — 1) (j— 2) v ] L 1)"1] (8)
i Jj
the Gibbs potential (the specific free enthalpy) g:
80./p. = ¢ -I- B/o. ' ) (9

Let us present a brief description of the approximation method to determine the coefficients ajj.

It is a question of the general problem of mathematically determining a surface F = F(x, y) in space,
which is given by a set of experimental points x;, y;, f; and the weight w;. The surface should be deter-
mined by the sum:
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The forms of the functions g;; should be given for each i and j. The coefficients @jj are determined
by least squares ’ N
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wl?el.ce L is the number of experimental points, On the basis of the usual conditions for determining the
minimum from (11) by partial differentiation with respect to each coefficient oij» whose subscript is de-

noted for distinction by uv, and equating this relationship to zero, we obtain
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We obtain such an expression for each coefficient ayy. By commutating the summation signs, (12)
can be written as
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For convenience in the exposition, we replace the subscripts ij by k and yv by , after which we ob-
tain from (13)
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where Kmax is the total number of coefficients, The sd.bscript w also varies between 1 and Ky g%, so that
all the equations (14) can be written as one matrix equation. Using the notation
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The matrix [|A[ is symmetric.

Such a linear system of equations can be solved by the usual methods. We used the Gauss method
with a subsequent correction,

The approximation method described permits simultaneous approximation of diverse data, i.e., dis-
tinct surfaces Fy(x, y), Fo(x,y). .., In the space, which are interrelated by mathematical relationships
(thermodynamic rules). An appropriate matrix equation .is derived for each kind of data by adding the in-
dividual matrices while taking account of the estimation factors, and then the system of equations obtained
as a result of the addition is solved. Hust and McCarty [2], as well as Vukalovich, et al. [3] indicated the
possibility of a simultaneous approximation of diverse data by the addition of the matrix equations. The
fundamental advantages of this method over the usual approximation used up to now for data of one species
(as a rule, approximations of the p—v—T values) are the possibility of processing a large number of data,
and therefore, a large quantity of information; better correlation of the data; the possibility of deriving an
equation of state for substances about which there are diverse data, but in a small quantity; improvement
of the accuracy of the computed values because of strict conservation of the thermodynamic consistency
in deriving the equation of state; improvement of the extrapolation in the equation of state; the possibility
of approximate compliance with the singular conditions (the Maxwell criterion, for example).

898



The first attempts at taking account of diverse initial data in deriving the equation of state were

made by Keyes, et al, [4] and Bender [5]. In the first case, values of the isobaric specific heat in an ideal
gaseous state cp, and the saturation enthalpies h' and h" were approximated in addition to the p—v—T values
in their equatmns and the condition g'(T) = g"(T) in the second case. Recently, the equation of Altunin

and Gadetskii [6] became known, in whose approximation the values of cp and the condition g'(T) = g" (T)
were used in addition to the p—v-T values,

The expressions needed in (10)-(16) for data of diverse species are
n=mu=1—18; y=f=0—1,
for the p—v-T data:
fi = B(@¥0,0) — Vog  g;;(t, & =v7E,

for the enthalpy data:
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for data of the isochoric specific heat:
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for the condition g"(T)—g"(T):
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The subscript s is the saturation state
The expressions presented above are deduced from (4) by using the relations (5), (7), (8), and (9)

The method described was used to derive a new equation of state for carbon dioxide.
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